欢迎访问:常州市武进区嘉泽中心小学网站 !今天是:
栏目列表
您现在的位置是:首页>>教师>>计算机技术>>程序设计>>杂项>>文章内容
AVL树的实现(源码)
发布时间:2008-11-20   点击:   来源:本站原创   录入者:佚名
 

AVLTree

A. First Edition
This is first edition of my AVL Tree and I never expect it takes so long as almost one week to finish! Of course
it is partly because of Christmas when I was continually interrupt by the earthly issues such as visiting a 
friend and wasting some meaningful time on meaningless matters. 
B.The problem
To write AVL tree on template basis and try to keep as much as possible of original BST frame work
because the code by Mr. Shaffer is very concise and compact! And efficiency is also a very important
issue here. As AVLTree has to store extra information than a BST, it is expected that we need to 
reduce as many "balancing operations" as possible. 
C.The idea of program  

By adding a little piece of code in "insert" method of BST, I actually try to do the keeping-balance

job along the "insert" operation from bottom-up which always keep each node up-to-date balanced. It

is believed by me the best solution to implement it. Unfortunately I have to keep the clue of the

path which leads to the newly-inserted node at leaf position. So, I was obliged to add one more

field in node---"inLeft" which is a boolean value indicating which side the path goes down to the

new leaf. Along with it is the "height" data which is the absolute height of a subtree rooted as

current node. I thought it is a cheating in pseudo code by using "balancing-factor" as instead of

using "real height" of each node. But after finishing the program with several big changes, I

realized I might do some stupid things on assuming that absolute height is necessary. Maybe in

second edition I should combine both "inLeft" and "height" together with "factor"----balancing

factor.

D.The major functions
1. bool insert(const Elem& e)
Do you expect that I might start from here? But no, I didn't change anything here. And it is only 
after I finished, I thought I can omit it even "inserthelp" is not virtual.
2. BinNode<Elem>* inserthelp(BinNode<Elem>*, const Elem&);
This function is almost same as original BST except I try to update the height after each insertion
which will go up from the inserted new leaf along path. And before that insertion, I placed a road
sign "inLeaf" to indicate which side the path takes.
3. void updateHeight(BinNode<Elem>*& subroot);
This is the key part of program where you update height first and then try to examine the balance
and try to keep it. It is the tricky part as I change the code many times. Finally I realized that
there are two big cases: a) The first root which is also the first node with factor 2/-2; b) The node
whose son node has factor of 2/-2; There are some extra conditions to examine the "first" in a) to 
make sure it is the "first". 
4. int getTreeHeight(BinNode<Elem>* subroot);
I resist to use recursive method because the field "height" is a short-cut.
5. BinNode<Elem>* singleRotate(BinNode<Elem>* parent, bool isRoot, bool left2right);
Don't forget to adjust balance after rotating and the sequence is important as you have to do it from
bottom-up.
6. BinNode<Elem>* doubleRotate(BinNode<Elem>* parent, bool isRoot, bool left2right);
I made it look simple by adding the "doDouble" and quite satisfy with it.
E.Further improvement
 
F.File listing
1. AVLTree.h
2. BinNode.h
3. BST.h
4. dictionary.h
5. Elem.h
6. AVLTree.cpp  (main)
 
file name: BinNode.h
// Binary tree node abstract class

template <class Elem> class BinNode {

public:

	// Return the node's element

	virtual Elem& val() = 0;

	// Set the node's element

	virtual void setVal(const Elem&) = 0;

	// Return the node's left child

	virtual BinNode* left() const = 0;

	// Set the node's left child

	virtual void setLeft(BinNode*) = 0;

	// Return the node's right child

	virtual BinNode* right() const = 0;

	// Set the node's right child

	virtual void setRight(BinNode*) = 0;

	// Return true iff the node is a leaf

	virtual bool isLeaf() = 0;

	//my personal preference

	virtual BinNode<Elem>* getSon(bool isLeft)const=0; 

	//my personal preference

	virtual void setSon(BinNode<Elem>* son, bool isLeft)=0;

};



// Binary tree node class

template <class Elem>

class BinNodePtr : public BinNode<Elem> {

private:

	Elem it;                     // The node's value

	BinNodePtr* lc;              // Pointer to left child

	BinNodePtr* rc;              // Pointer to right child

public:

	// Two constructors -- with and without initial values

	BinNodePtr() { lc = rc = NULL; }

	BinNodePtr(Elem e, BinNodePtr* l =NULL,

					 BinNodePtr* r =NULL)

	{ it = e; lc = l; rc = r; }

	~BinNodePtr() {}             // Destructor

	Elem& val() { return it; }

	void setVal(const Elem& e) { it = e; }

	inline BinNode<Elem>* left() const { return lc; }

	void setLeft(BinNode<Elem>* b) { lc = (BinNodePtr*)b; }

	inline BinNode<Elem>* right() const { return rc; }

	void setRight(BinNode<Elem>* b) { rc = (BinNodePtr*)b; }

	bool isLeaf() { return (lc == NULL) && (rc == NULL); }

	BinNode<Elem>* getSon(bool isLeft)const {return isLeft?lc:rc;}

	void setSon(BinNode<Elem>* son, bool isLeft)

	{

		isLeft?setLeft(son):setRight(son);

	}

};





template <class Elem>

class AVLNodePtr : public BinNode<Elem> 

{

protected:

	Elem it;                     // The node's value

	AVLNodePtr* lc;              // Pointer to left child

	AVLNodePtr* rc;              // Pointer to right child

	int height;

	bool inLeft;

public:

 // Two constructors -- with and without initial values

	AVLNodePtr() { lc = rc = NULL; height=1; inLeft=true; }

	AVLNodePtr(Elem e, AVLNodePtr<Elem>* l =NULL,

					 AVLNodePtr<Elem>* r =NULL, int newHeight=1)

	{ it = e; lc = l; rc = r; height=newHeight; inLeft=true;}

	~AVLNodePtr() {}             // Destructor

	Elem& val() { return it; }

	void setVal(const Elem& e) { it = e; }

	BinNode<Elem>* left() const { return lc; }

	void setLeft(BinNode<Elem>* b) { lc = (AVLNodePtr*)b; }

	inline BinNode<Elem>* right() const { return rc; }

	void setRight(BinNode<Elem>* b) { rc = (AVLNodePtr*)b; }

	bool isLeaf() { return (lc == NULL) && (rc == NULL); }

	void setHeight(int newHeight){height=newHeight;}

	int getHeight(){return height;}

	BinNode<Elem>* getSon(bool isLeft)const {return isLeft?lc:rc;}

	bool getSide() const {return inLeft;}

	void setSide(bool isLeft){ inLeft=isLeft;}

	void setSon(BinNode<Elem>* son, bool isLeft)

	{

		isLeft?setLeft(son):setRight(son);

	}



};
 
file name: BST.h
// This file includes all of the pieces of the BST implementation



#include "dictionary.h"



#include "binnode.h"



// Binary Search Tree implementation for the Dictionary ADT

template <class Key, class Elem, class KEComp, class EEComp>

class BST : public Dictionary<Key, Elem, KEComp, EEComp> {

protected:

  BinNode<Elem>* root;   // Root of the BST

  int nodecount;         // Number of nodes in the BST

  // Private "helper" functions

  void clearhelp(BinNode<Elem>*);

  BinNode<Elem>* inserthelp(BinNode<Elem>*, const Elem&);

  BinNode<Elem>* deletemin(BinNode<Elem>*, BinNode<Elem>*&);

  BinNode<Elem>* removehelp(BinNode<Elem>*, const Key&,

                            BinNode<Elem>*&);

  bool findhelp(BinNode<Elem>*, const Key&, Elem&) const;

  void printhelp(BinNode<Elem>*, int) const;

public:

  BST() { root = NULL; nodecount = 0; }  // Constructor

  ~BST() { clearhelp(root); }            // Destructor

  void clear()

    { clearhelp(root); root = NULL; nodecount = 0; }

  bool insert(const Elem& e) {

    root = inserthelp(root, e);

    nodecount++;

    return true;

  }

  bool remove(const Key& K, Elem& e) {

    BinNode<Elem>* t = NULL;

    root = removehelp(root, K, t);

    if (t == NULL) return false;  // Nothing found

    e = t->val();

    nodecount--;

    delete t;

    return true;

  }

  bool removeAny(Elem& e) { // Delete min value

    if (root == NULL) return false; // Empty tree

    BinNode<Elem>* t;

    root = deletemin(root, t);

    e = t->val();

    delete t;

    nodecount--;

    return true;

  }

  bool find(const Key& K, Elem& e) const

    { return findhelp(root, K, e); }

  int size() { return nodecount; }

  void print() const {

    if (root == NULL) cout << "The BST is empty.\n";

    else printhelp(root, 0);

  }

};



template <class Key, class Elem, class KEComp, class EEComp>

void BST<Key, Elem, KEComp, EEComp>::

clearhelp(BinNode<Elem>* subroot) {

  if (subroot == NULL) return;

  clearhelp(subroot->left());

  clearhelp(subroot->right());

  delete subroot;

}



template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* BST<Key, Elem, KEComp, EEComp>::

inserthelp(BinNode<Elem>* subroot, const Elem& val) {

  if (subroot == NULL)            // Empty tree: create node

    return (new BinNodePtr<Elem>(val, NULL, NULL));

  if (EEComp::lt(val, subroot->val())) // Insert on left

    subroot->setLeft(inserthelp(subroot->left(), val));

  else subroot->setRight(inserthelp(subroot->right(), val));

  return subroot;  // Return subtree with node inserted

}



template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* BST<Key, Elem, KEComp, EEComp>::

deletemin(BinNode<Elem>* subroot, BinNode<Elem>*& min) {

  if (subroot->left() == NULL) { // Found min

    min = subroot;

    return subroot->right();

  }

  else {                         // Continue left

    subroot->setLeft(deletemin(subroot->left(), min));

    return subroot;

  }

}



template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* BST<Key, Elem, KEComp, EEComp>::

removehelp(BinNode<Elem>* subroot, const Key& K,

           BinNode<Elem>*& t) {

  if (subroot == NULL) return NULL; // Val is not in tree

  else if (KEComp::lt(K, subroot->val())) // Check left

    subroot->setLeft(removehelp(subroot->left(), K, t));

  else if (KEComp::gt(K, subroot->val())) // Check right

    subroot->setRight(removehelp(subroot->right(), K, t));

  else {                           // Found it: remove it

    BinNode<Elem>* temp;

    t = subroot;

    if (subroot->left() == NULL)       // Only a right child

      subroot = subroot->right();      //  so point to right

    else if (subroot->right() == NULL) // Only a left child

      subroot = subroot->left();       //  so point to left

    else {                    // Both children are non-empty

      subroot->setRight(deletemin(subroot->right(), temp));

      Elem te = subroot->val();

      subroot->setVal(temp->val());

      temp->setVal(te);

      t = temp;

    }

  }

  return subroot;

}



template <class Key, class Elem, class KEComp, class EEComp>

bool BST<Key, Elem, KEComp, EEComp>:: findhelp(

      BinNode<Elem>* subroot, const Key& K, Elem& e) const {

  if (subroot == NULL) return false;         // Empty tree

  else if (KEComp::lt(K, subroot->val()))    // Check left

    return findhelp(subroot->left(), K, e);

  else if (KEComp::gt(K, subroot->val()))    // Check right

    return findhelp(subroot->right(), K, e);

  else { e = subroot->val();  return true; } // Found it

}



template <class Key, class Elem, class KEComp, class EEComp>

void BST<Key, Elem, KEComp, EEComp>::

printhelp(BinNode<Elem>* subroot, int level) const {

  if (subroot == NULL) return;          // Empty tree

  printhelp(subroot->left(), level+1);  // Do left subtree

  for (int i=0; i<level; i++)           // Indent to level

    cout << "  ";

  cout << subroot->val() << "\n";       // Print node value

  printhelp(subroot->right(), level+1); // Do right subtree

}

 
file name: dictionary.h
 
// The Dictionary abstract class.  KEComp compares a key

// and an element. EEComp compares two elements.  

template <class Key, class Elem, class KEComp, class EEComp>

class  Dictionary {

public:

  // Reinitialize dictionary

  virtual void clear() = 0;

  // Insert an element.  Return true if insert is

  // successful, false otherwise.

  virtual bool insert(const Elem&) = 0;

  // Remove some element matching Key.  Return true if such

  // exists, false otherwise.  If multiple entries match

  // Key, an arbitrary one is removed.

  virtual bool remove(const Key&, Elem&) = 0;

  // Remove and return an arbitrary element from dictionary.

  // Return true if some element is found, false otherwise.

  virtual bool removeAny(Elem&) = 0;

  // Return a copy of some Elem matching Key.  Return true

  // if such exists, false otherwise.  If multiple elements

  // match Key, return an arbitrary one.

  virtual bool find(const Key&, Elem&) const = 0;

  // Return the number of elements in the dictionary.

  virtual int size() = 0;

};

 
file name: Elem.h
//This is the element of login system



class KEComp

{

public:

	static bool lt(int key, int elem) {return key<elem;}

	static bool eq(int key, int elem) {return key==elem;}

	static bool gt(int key, int elem) {return key>elem;}

};



class EEComp

{

public:

	static bool lt(int e1, int e2)

		{ return e1<e2;}

	static bool eq(int e1, int e2)

		{ return e1==e2;}

	static bool gt(int e1, int e2)

		{ return e1>e2;}

};
 
file name:  AVLTree.h
#include "BST.h"



template<class Elem>

struct Descriptor

{

	BinNode<Elem>* parent;

	bool isRoot;

	bool isLeft;

	bool isSingle;

	bool left2right;

};





template<class Key, class Elem, class KEComp, class EEComp>

class AVL: public BST<Key, Elem, KEComp, EEComp>

{

protected:

//	BinNode<Elem>* startPtr;

	void clearhelp(BinNode<Elem>*);

	BinNode<Elem>* inserthelp(BinNode<Elem>*, const Elem&);

	BinNode<Elem>* removehelp(BinNode<Elem>*, const Key&,

							BinNode<Elem>*&);

	bool findhelp(BinNode<Elem>*, const Key&, Elem&) const;

	void printhelp(BinNode<Elem>*, int) const;

	void updateHeight(BinNode<Elem>*& subroot);

	int  getFactor(BinNode<Elem>* subroot);

	void adjust(BinNode<Elem>*& subroot, bool isRoot);

	int getTreeHeight(BinNode<Elem>* subroot);

	void adjustHeight(BinNode<Elem>* subroot);

	BinNode<Elem>* singleRotate(BinNode<Elem>* parent, bool isRoot, bool left2right);

	BinNode<Elem>* doubleRotate(BinNode<Elem>* parent, bool isRoot, bool left2right);

	void checkDir(BinNode<Elem>* subroot, bool& isSingle, bool& left2right);

	BinNode<Elem>* doDouble(BinNode<Elem>* oldRoot, bool left2right);



public:

	AVL() { root = NULL; nodecount = 0; }  // Constructor

	~AVL() { clearhelp(root); root=NULL; }            // Destructor

	bool insert(const Elem& e)

	{		

		root = inserthelp(root, e);

		nodecount++;

		return true;

	}

};



//do not use recursive!!!!!

template <class Key, class Elem, class KEComp, class EEComp>

int AVL<Key, Elem, KEComp, EEComp>::getTreeHeight(BinNode<Elem>* subroot)

{

	AVLNodePtr<Elem>* ptr, *l, *r;

	int newHeight, lHeight, rHeight;//, factor;//, sonFactor;



	if (subroot==NULL)

	{

		return 0;

	}

	

	ptr=(AVLNodePtr<Elem>*)subroot;

	l=(AVLNodePtr<Elem>*)ptr->left();

	r=(AVLNodePtr<Elem>*)ptr->right();	

	if (l==NULL)

	{

		lHeight=0;

	}

	else

	{

		lHeight=l->getHeight();

	}

	if (r==NULL)

	{

		rHeight=0;

	}

	else

	{

		rHeight=r->getHeight();

	}

	newHeight=1+(lHeight>rHeight?lHeight:rHeight);

	return newHeight;

}



template <class Key, class Elem, class KEComp, class EEComp>

void AVL<Key, Elem, KEComp, EEComp>::adjustHeight(BinNode<Elem>* subroot)

{

	int height;

	if (subroot==NULL)

	{

		return;

	}

	height=getTreeHeight(subroot);

	((AVLNodePtr<Elem>*)(subroot))->setHeight(height);

}



template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* AVL<Key, Elem, KEComp, EEComp>::doDouble(BinNode<Elem>* oldRoot, 

														bool left2right)

{

	BinNode<Elem> *small, *mid, *big,*t1,*t2,*t3,*t4;

	if (left2right)

	{

		big=oldRoot;//the root;

		small=oldRoot->left();

		mid=small->right();

		t1=small->left();

		t2=mid->left();

		t3=mid->right();

		t4=big->right();

	}

	else

	{

		small=oldRoot;

		big=small->right();

		mid=big->left();

		t1=small->left();

		t2=mid->left();

		t3=mid->right();

		t4=big->right();

	}

	mid->setLeft(small);

	mid->setRight(big);

	small->setLeft(t1);

	small->setRight(t2);

	big->setLeft(t3);

	big->setRight(t4);

	adjustHeight(small);

	adjustHeight(big);

	adjustHeight(mid);

	return mid;

}



template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* AVL<Key, Elem, KEComp, EEComp>::doubleRotate(BinNode<Elem>* parent,

	bool isRoot, bool left2right)

{

	BinNode<Elem>* oldRoot;

	bool isLeft;

		

	if (isRoot)

	{

		oldRoot=parent;

		root=doDouble(oldRoot, left2right);

		

		return root;//because we need parent return as real root

	}

	else

	{

		isLeft=((AVLNodePtr<Elem>*)parent)->getSide();

		oldRoot=parent->getSon(isLeft);

		parent->setSon(doDouble(oldRoot, left2right), isLeft);

		adjustHeight(parent);

		return parent;

	}

}





//if isRoot, we don't need isLeft, it is useful when it is not root and 

//we need to know which son it is in

template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* AVL<Key, Elem, KEComp, EEComp>::singleRotate(BinNode<Elem>* parent,

	bool isRoot, bool left2right)

{

	BinNode<Elem>* oldRoot=parent, *son, *t1;

	bool isLeft=((AVLNodePtr<Elem>*)parent)->getSide();

	

	if (isRoot)

	{		

		son=parent->getSon(isLeft);

		t1=son->getSon(!left2right);

		son->setSon(parent, !left2right);

		parent->setSon(t1, left2right);

		//because parent is at lower level now, we need adjust parent first!!!

		adjustHeight(parent);//sequence is VERY IMPORTANT!

		adjustHeight(son);//sequence is VERY IMPORTANT!

		

		root=son;

		return son;//because now, we need return son as parent;

	}

	else

	{

		//for non-root rotation, parent doesn't change!!!!!

		//it is now very concise!!

		oldRoot=parent->getSon(isLeft);

		son=oldRoot->getSon(left2right);//this is the trick!

		t1=son->getSon(!left2right);

		parent->setSon(son, isLeft);

		oldRoot->setSon(t1, left2right);

		son->setSon(oldRoot, !left2right);

		//sequence is very important!!!

		adjustHeight(oldRoot);

		adjustHeight(son);

		adjustHeight(parent);//adjust sequence: from low to high!!!

		return parent;

	}

	

}



//check the direction of rotation by returning value in reference

template<class Key, class Elem, class KEComp, class EEComp>

void AVL<Key, Elem, KEComp, EEComp>::checkDir(BinNode<Elem>* subroot, 

											  bool& isSingle, bool& left2right)

{

	BinNode<Elem>* son;

	int parentFactor, sonFactor;

	bool isLeft;

	isLeft=((AVLNodePtr<Elem>*)subroot)->getSide();

	son=subroot->getSon(isLeft);

	parentFactor=getFactor(subroot);

	sonFactor=getFactor(son);

	isSingle=parentFactor*sonFactor>0;//same sign

	left2right=parentFactor>0;

}



//if isroot, isLeft will be ignored.

template <class Key, class Elem, class KEComp, class EEComp>

void AVL<Key, Elem, KEComp, EEComp>::adjust(BinNode<Elem>*& subroot, bool isRoot)

{

	BinNode<Elem>* temp;

	bool isSingle, left2right, isLeft;

	if (isRoot)

	{

		temp=subroot;

	}

	else

	{

		//use its son to check

		isLeft=((AVLNodePtr<Elem>*)subroot)->getSide();

		temp=subroot->getSon(isLeft);

	}



	checkDir(temp, isSingle, left2right);

	if (isSingle)

	{

		//it helps reading and for singleRotate isLeft is ignored when it is isRoot

		subroot=singleRotate(subroot, isRoot, left2right);

	}

	else

	{

		subroot=doubleRotate(subroot, isRoot, left2right);

	}

}





template <class Key, class Elem, class KEComp, class EEComp>

int AVL<Key, Elem, KEComp, EEComp>::getFactor(BinNode<Elem>* subroot)

{

	int lHeight, rHeight;

	AVLNodePtr<Elem>* ptr, *l, *r;

	if (subroot==NULL)

	{

		return 0;

	}

	ptr=(AVLNodePtr<Elem>*)subroot;

	l=(AVLNodePtr<Elem>*)(ptr->left());

	r=(AVLNodePtr<Elem>*)(ptr->right());

	if (l==NULL)

	{

		lHeight=0;

	}

	else

	{

		lHeight= l->getHeight();

	}

	if (r==NULL)

	{

		rHeight=0;

	}

	else

	{

		rHeight=r->getHeight();

	}

	return lHeight-rHeight;

}



template <class Key, class Elem, class KEComp, class EEComp>

void AVL<Key, Elem, KEComp, EEComp>::updateHeight(BinNode<Elem>*& subroot)

{

	int factor, sonFactor;

	bool isLeft;

	BinNode<Elem> *son;

	if (subroot==NULL)

	{

		return;

	}

	

	adjustHeight(subroot);



	factor=getFactor(subroot);



	isLeft=((AVLNodePtr<Elem>*)subroot)->getSide();

	son=subroot->getSon(isLeft);

	sonFactor=getFactor(son);

	//first situation: the first 2/-2 we meet from bottom-up

	if ((factor==2||factor==-2)&&subroot==root)

	{

		//a special case!!! as we search from bottom up

		//we may wait to adjust until we reach its father

		//the father happens to be root. But it is not a

		//root adjustment!!!

		if (sonFactor==1||sonFactor==-1)

		{

			adjust(subroot, true);

		}

		else

		{

			adjust(subroot, false);

		}				

	}

	else

	{

		

		if (sonFactor==2||sonFactor==-2)

		{

			adjust(subroot, false);

		}

	}

}









template <class Key, class Elem, class KEComp, class EEComp>

BinNode<Elem>* AVL<Key, Elem, KEComp, EEComp>::inserthelp(BinNode<Elem>* subroot, 

														  const Elem& val)

{

	if (subroot == NULL)            // Empty tree: create node

	{

		return (new AVLNodePtr<Elem>(val, NULL, NULL, 1));

	}

	if (EEComp::lt(val, subroot->val())) // Insert on left

	{

		((AVLNodePtr<Elem>*)subroot)->setSide(true);

		subroot->setLeft(inserthelp(subroot->left(), val));

		updateHeight(subroot);

	}

	else 

	{

		((AVLNodePtr<Elem>*)subroot)->setSide(false);

		subroot->setRight(inserthelp(subroot->right(), val));

		updateHeight(subroot);

	}

	return subroot;  // Return subtree with node inserted

}





template <class Key, class Elem, class KEComp, class EEComp>

void AVL<Key, Elem, KEComp, EEComp>::clearhelp(BinNode<Elem>* subroot) 

{

	if (subroot == NULL)

	{

		return;

	}

	clearhelp(subroot->left());

	clearhelp(subroot->right());

	delete subroot;	

}
 
file name: AVLTree.cpp  (main)

#include <iostream>

#include <time.h>

#include "AVLTree.h"

#include "Elem.h"





using namespace std;



int main()

{

	int num;

	AVL<int, int, KEComp, EEComp> A;

	//srand(time(0));

	for (int i=0; i<25; i++)

	{

		cout<<"===================";

		num=rand()%100+12;

		cout<<"insert number "<<num<<endl;

		A.insert(num);

		A.print();

	}

	return 0;

}

 
Here is the result: Please note that there are 
single rotating while inserting number 90, 93, 107, 
double rotating while inserting number 36, 74, 
===================insert number 53

53

===================insert number 79

53

  79

===================insert number 46

  46

53

  79

===================insert number 12

    12

  46

53

  79

===================insert number 81

    12

  46

53

  79

    81

===================insert number 36

    12

  36

    46

53

  79

    81

===================insert number 90

    12

  36

    46

53

    79

  81

    90

===================insert number 70

    12

  36

    46

53

      70

    79

  81

    90

===================insert number 74

    12

  36

    46

53

      70

    74

      79

  81

    90

===================insert number 76

    12

  36

    46

53

      70

    74

      76

  79

    81

      90

===================insert number 17

    12

      17

  36

    46

53

      70

    74

      76

  79

    81

      90

===================insert number 57

    12

      17

  36

    46

53

        57

      70

    74

      76

  79

    81

      90

===================insert number 93

    12

      17

  36

    46

53

        57

      70

    74

      76

  79

      81

    90

      93

===================insert number 39

    12

      17

  36

      39

    46

53

        57

      70

    74

      76

  79

      81

    90

      93

===================insert number 73

    12

      17

  36

      39

    46

53

        57

      70

        73

    74

      76

  79

      81

    90

      93

===================insert number 103

    12

      17

  36

      39

    46

53

        57

      70

        73

    74

      76

  79

      81

    90

      93

        103

===================insert number 107

    12

      17

  36

      39

    46

53

        57

      70

        73

    74

      76

  79

      81

    90

        93

      103

        107

===================insert number 54

    12

      17

  36

      39

    46

53

        54

      57

    70

        73

      74

        76

  79

      81

    90

        93

      103

        107

===================insert number 39

    12

      17

  36

      39

    39

      46

53

        54

      57

    70

        73

      74

        76

  79

      81

    90

        93

      103

        107

===================insert number 48

    12

      17

  36

      39

    39

      46

        48

53

        54

      57

    70

        73

      74

        76

  79

      81

    90

        93

      103

        107

Press any key to continue
 
	



                                 back.gif (341 bytes)       up.gif (335 bytes)         next.gif (337 bytes)

 


附件:
    关闭窗口
    打印文档
    账号登录
    保持登录 忘记密码?
    账号与武进教师培训平台同步